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Abstract: Human feedback can greatly accelerate robot learning, but in real-
world settings, such feedback is costly and limited. Existing human-in-the-loop
reinforcement learning (HiL-RL) methods often assume abundant feedback, lim-
iting their practicality for physical robot deployment. In this work, we introduce
SPARQ, a progress-aware query policy that requests feedback only when learn-
ing stagnates or worsens, thereby reducing unnecessary oracle calls. We evaluate
SPARQ on a simulated URS cube-picking task in PyBullet, comparing against
three baselines: no feedback, random querying, and always querying. Our experi-
ments show that SPARQ achieves near-perfect task success, matching the perfor-
mance of always querying while consuming about half the feedback budget. It
also provides more stable and efficient learning than random querying, and sig-
nificantly improves over training without feedback. These findings suggest that
selective, progress-based query strategies can make HiL-RL more efficient and
scalable for robots operating under realistic human effort constraints.

1 Introduction

Robots deployed in the real world must adapt to diverse and dynamic environments while operating
under safety and efficiency constraints. HiL-RL has emerged as a powerful paradigm to align robot
behavior with human intent by incorporating interactive signals such as evaluative feedback [1], cor-
rective actions[2, 3], and preference comparisons [4]. These approaches accelerate learning in tasks
ranging from manipulation to navigation [5, 6]. However, their practicality is limited by the cost
of human supervision: attention is a scarce resource, constrained by fatigue, multitasking demands,
and operational limitations [6, 7]. Continuous querying for feedback overwhelms supervisors, while
too few queries slow adaptation and degrade performance.

To address this tension, interactive strategies have been proposed where robots query humans only
when needed. “Human-gated” approaches allow supervisors to intervene when they see fit [3, 8],
but require continuous monitoring and cannot scale to multi-robot settings. “Robot-gated” methods
shift the responsibility to the agent, enabling it to request feedback when encountering novel or risky
states [9, 10]. While these strategies reduce unnecessary interactions, they typically lack explicit
mechanisms for managing strict feedback budgets and often struggle in continuous-control tasks
where queries must be carefully timed to avoid disrupting smooth execution.

Inspired by how humans naturally allocate their effort rationally, we propose SPARQ (Selective
Progress-Aware Resource Querying), a budget-aware HiL-RL method. Rather than relying on con-
tinuous or uncertainty-driven feedback, SPARQ monitors task progress and selectively requests help
only when learning stagnates or worsens. By explicitly modeling human attention as a limited bud-
get and enforcing cooldowns between queries, SPARQ balances learning efficiency with supervision
cost. An overview of our approach is illustrated in Fig. 1. Panel (a) shows the SPARQ-augmented
training pipeline, where the agent selectively queries a human oracle only when needed. Panel
(b) zooms into the SPARQ decision rule, which determines when queries are triggered based on
progress, patience, and budget constraints.

Our contributions are as follows:
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Figure 1: (a) Training with SPARQ: the policy 7y samples a;, the SPARQ gate decides whether
to query the human oracle 7p,; the executed transition (s, at, St41, ) is stored with the effective
reward rfff = ry + Aft — cq; in replay D, and SAC updates 6. (b) SPARQ decision rule (zoom-
in): query when (AJ; < —eéworsen) OF (no improvement for P steps), and only if B > 0 and
cooldown= 0; otherwise use a; from 7.

* We propose SPARQ), a resource-rational HiL-RL method that models human attention as a
budgeted resource and allocates queries selectively.

* We introduce a progress-aware query rule that triggers feedback requests based on learning
stagnation or deterioration, with patience and cooldown to prevent redundancy.

* We empirically evaluate SPARQ on a simulated URS cube-picking task, showing that it
matches the success rate of full-feedback baselines while using about half the feedback
budget, and performs comparably to Random on this task while providing explicit budget
control and smoother temporal allocation of queries.

2 Related Work

Human-in-the-loop reinforcement learning (HiL-RL) has been studied extensively through frame-
works that leverage explicit human feedback to accelerate agent learning. Early approaches such
as TAMER([1] and its extension Deep TAMER[2] enabled agents to learn policies directly from hu-
man reward signals, but they required frequent intervention, making them impractical in resource-
constrained scenarios. PEBBLE [11] improved upon this by using preference-based feedback to
reduce cognitive burden, yet it assumes relatively abundant annotations. Similarly, COACH [8]
modeled human feedback as policy-dependent, but lacked scalability to complex, high-dimensional
tasks. These methods underscore the benefits of human guidance but fail to explicitly account for
query efficiency, often leading to redundant human effort.

On the other hand, imitation learning has explored methods to minimize human supervision while
ensuring robust policy transfer. DAgger [12] introduced iterative aggregation of expert demon-
strations to mitigate compounding errors, but at the cost of requiring frequent expert corrections.
HG-DAgger [13] extended this paradigm by letting a human supervisor decide when to provide
demonstrations, reducing the labeling load compared to vanilla DAgger. However, this “human-
gated” mechanism still relies on continuous monitoring, limiting scalability in practice. To address



this, ThriftyDAgger [5] proposed querying experts only at uncertain states, but its heuristic query
strategy lacked robustness in continuous-control settings. More recently, Diff-DAgger [14] incorpo-
rated diffusion-based uncertainty modeling to refine query selection, yet its reliance on dense expert
demonstrations limits its practical applicability in settings with costly supervision.

Our work differs in two key respects. First, unlike TAMER- and PEBBLE-style methods that assume
abundant human feedback, SPARQ explicitly models human attention as a limited resource and
enforces a feedback budget. Second, unlike DAgger-style approaches that depend on dense expert
demonstrations and uncertainty heuristics, SPARQ introduces a progress-aware query criterion: the
agent requests feedback only when learning stagnates or deteriorates, combined with patience and
cooldown to avoid redundancy. This budget-aware design enables SPARQ to match the performance
of full-feedback baselines while cutting feedback usage nearly in half, offering a scalable pathway
for HiL-RL in real-world robotics.

3 Methods

Our objective is to study query policies that enable efficient human-in-the-loop reinforcement learn-
ing (HiL-RL) under limited and costly feedback. We first formalize the problem setting as a con-
strained reinforcement learning task, and then describe four query strategies: three baselines and our
proposed approach SPARQ (Selective Progress-Aware Resource Querying).

3.1 Problem Formulation

We model the robot learning task as a discrete-time Markov Decision Process (MDP), M =
(S, A, P, R,~) with continuous state space s € S, continuous action space a € .4, unknown transi-
tion dynamics P, reward function R, and discount factor v € [0, 1]. The agent’s objective is to learn
a policy mp : & — A that maximizes expected discounted return. Unlike standard RL, the reward
function R is partially specified and can be augmented by human feedback. We assume access to a
human oracle 7y, that can provide corrective signals when queried [12, 13]. Each query incurs a cost
¢ > 0, reflecting the limited time and attention of the human.

We define the agent’s effective reward at timestep ¢ as:
ff
e =ri+ A fe—coq, (D
where 7, is the environment reward, f; is the corrective feedback from the oracle 7;, when queried,

A is a scaling factor, and ¢; € {0, 1} indicates whether a query is made at time ¢. This formulation
follows potential-based reward shaping principles, which preserve policy invariance [15].

The total expected return under policy 7 and query policy 7, is:
T
J(m mq) =E ZWt(Tt +Afi —cqr) | 2
t=0

We further define AJ; as a proxy for learning progress, e.g., the change in average episodic return
or a task-specific metric such as distance-to-goal.

The goal is to jointly optimize the robot policy and query policy such that the agent learns efficiently
while minimizing human effort:

(m*,m,) = argmax J (7, ), 3)
subject to a feedback budget
T
> a < B, )
t=0

where B represents the maximum number of queries available.

The query policy 7, : S — {0, 1} thus decides when to request feedback, ideally only when learning
progress stagnates or worsens.



3.2 Baselines

All query strategies are trained using Soft Actor-Critic (SAC) [16], chosen for its stability and sam-
ple efficiency in continuous control tasks. We compare three baselines against our proposed method.

No Oracle. The no-oracle baseline represents standard reinforcement learning without human inter-
vention. The query policy is identically zero, m,(s) = 0 Vs € S, and the effective reward reduces
to 7t = 7. This baseline provides a lower bound on sample efficiency.

Random Querying. In this baseline, the agent queries the oracle with fixed probability p at each
timestep: m,(s) ~ Bernoulli(p). This strategy ignores task structure and may waste queries on
uninformative states. It serves as a mid-point between no supervision and full supervision.

Always Querying. Here, the agent queries the oracle at every timestep: m,(s) =1 Vs € S. This
baseline achieves fast learning but immediately exhausts the query budget and imposes maximal
human cost. It functions as an upper bound for performance under unlimited supervision.

3.3 SPARQ: Selective Progress-Aware Resource Querying

We propose a resource-rational query policy that adaptively balances performance improvement
against feedback cost. The key idea is to trigger queries selectively, only when learning progress
stagnates or worsens.

Progress-Aware Criterion. We also track learning progress using AJ; based on episodic return
or distance-to-goal. Queries are triggered when performance worsens beyond €yorsen, O When no
improvement is observed for P steps: AJ; < —€worsen VN0 improvement for P steps.

Budget and Cooldown. To respect the constraint ZtT:O q¢ < B, we maintain a finite query budget
and impose a cooldown period after each query to avoid redundancy. Algorithm 1 summarizes the
overall procedure for our proposed method SPARQ.

Practical tuning. We tune three scalars once per domain: patience P (steps without improvement),
worsening threshold €yosen (Minimum negative AJ; to trigger), and cooldown C' (steps to defer

Algorithm 1 SPARQ: Selective Progress-Aware Resource Querying

Require: Initial policy parameters 6, query budget B, thresholds €yorsen, PP, cooldown C
Ensure: Learned policy g
1: Initialize cooldown counter ¢ < 0
2: for each episode do
3 Reset environment, obtain s
4 for each timestept = 0,...,7T do
5: Sample a; ~ o (- | s¢)
6 Estimate progress AJ;
7 ifc=0and B > 0 and (AJ; < —€yorsen OF N0 improvement for P steps) then
8: Query oracle: a; < m5,(s¢)
9: Set q; < 1,update B < B —1

10: Reset cooldown counter: ¢ < C

11: else

12: Execute ay, set gz < 0

13: if ¢ > 0 then

14: Decrement cooldown counter: ¢ < ¢ — 1
15: end if

16: end if -

17: Observe reward r;, construct rfﬁ =7+ At — cqq > Eq. 1
18: Update 7y with SAC using ¢

19: Transition to s¢41

20: end for

21: end for




re-queries). A simple guideline is: choose P near 1-2x the median episode length; set €yorsen tO
the 5-10th percentile of negative |A.J;| magnitudes observed early in training; and pick C' so the
average query rate tracks the target feedback budget (e.g., adjust C' until % Zthl g ~ b/100 for a
desired b%). These rules-of-thumb yielded stable behavior without per-seed retuning in our setting.

4 Experimental Results

We evaluate SPARQ against three baseline query policies—No Oracle, Random Querying, and Al-
ways Querying, on a simulated URS cube-picking task in PyBullet. The evaluation addresses the
following research questions:

* RQ1: Can progress-aware querying improve query efficiency under a limited budget?

* RQ2: Does SPARQ achieve comparable or better task success rates than baselines with
fewer queries?

* RQ3: How do different query policies trade off task performance and human effort cost?

4.1 Task Setup

The evaluation task requires the URS arm to reach and grasp a cube placed at random positions on
a tabletop workspace. The action space consists of continuous (z,y) end-effector target positions,
while the observation space is the cube’s (x,y) location. A sparse success reward of +1 is given
when the cube is successfully grasped, augmented with potential-based shaping based on distance-
to-goal.

All query policies are trained using Soft Actor-Critic (SAC) for 50k timesteps. Hyperparameters
such as the feedback budget B, query cost ¢, and patience P are fixed across all methods.

4.2 Query Efficiency (RQ1)

An effective query policy should minimize unnecessary oracle requests while still providing suffi-
cient supervision to enable learning. We measure query efficiency as the average number of oracle
requests per episode relative to the nominal budget.

As shown in Table 1 and Fig. 2b, SPARQ consumes ~ 13% of the budget, compared to 27%
for Always Querying, effectively halving supervision demand. This demonstrates that progress-
aware triggering avoids redundant queries that random or unconditional strategies incur. We allow
occasional post-convergence queries due to replay shaping and drift checks; in deployment, a stop-
when-converged guard (zero queries once success > a threshold over a patience window) would
eliminate these residual queries.

Method Success Rate  Budget %  Cost-Adj. Return  Queries / Success Final Dist

always 1.000 4 0.000 26.6% 198.4 1.33 0.001 £ 0.000
no_oracle 0.610 £ 0.490 0.0% 91.1 0.00 0.002 + 0.000
random 1.000 4 0.000 12.6% 196.6 0.63 0.003 £ 0.001
sparq 1.000 +£ 0.000 13.2% 1924 0.66 0.002 £ 0.001

Table 1: Overall comparison at 50k steps (mean + std unless noted). Cost-Adj. Return assumes
query cost ¢ = 0.05. Final Dist is reported as median = MAD end-effector—cube distance at grasp
termination.

4.3 Task Performance (RQ2)

We next evaluate task success and learning dynamics. Figure 2a reports success rates and episodic
returns across training. SPARQ attains a 100% final success rate, on par with Always Querying
and substantially higher than No Oracle (61%). Unlike Random Querying, SPARQ achieves faster



convergence and more stable training, indicating that its progress-based criterion provides timely
and informative feedback.

4.4 Trade-off Analysis (RQ3)

Finally, we examine the trade-off between task performance and human effort cost. Table 1 sum-
marizes this balance by reporting success rate, budget usage, cost-adjusted return, query efficiency,
and final grasp distance. SPARQ achieves near-optimal success rates while using only about half as
many queries as Always Querying. Its cost-adjusted return is nearly identical to the unconstrained
baseline, despite consuming substantially fewer human interactions. Moreover, SPARQ’s final grasp
distance is comparable to or better than other baselines, indicating that reduced supervision does not
compromise execution precision.
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Figure 2: Training dynamics on the UR5 cube-picking task. (a) SPARQ converges to 100% success
with far fewer queries than Always. (b) SPARQ’s query rate remains low and stable over training.

4.5 Why does Random perform so well here?

This benchmark is intentionally simple: a low-dimensional state (z,y) for the cube, a shaped
progress signal (distance-to-goal), and stable SAC training. Under these conditions, many query
placements are similarly helpful, so a fixed-rate Random policy can sit close to the Pareto front.
SPARQ’s advantage shows up in budget regularization and temporal smoothness (Fig. 2b): its query
rate remains low and steady, avoiding bursts that can fatigue human operators, while achieving the
same final success. We view this as evidence that progress-aware gating is a principled default when
scaling to higher-dimensional observations and noisier progress proxies.

5 Conclusion

We introduced SPARQ, a resource-rational query framework for budget-aware human-in-the-loop
reinforcement learning (HiL-RL). SPARQ monitors learning progress and selectively queries for
feedback only when performance stagnates or worsens, ensuring that limited supervision is allo-
cated where it is most impactful. In experiments on a simulated URS cube-picking task, SPARQ
achieved 100% final success, matching the unconstrained Always Querying baseline while con-
suming about half the supervision budget. It also maintained comparable cost-adjusted returns and
demonstrated precise grasp accuracy, underscoring that targeted feedback can deliver both efficiency
and performance. While these results highlight SPARQ’s potential for scalable HiL-RL, our eval-
uation is limited to a single simulated domain. A multi-seed robustness study and deployment on
real-world robots remain important future directions. Extending SPARQ to incorporate richer forms
of human input (e.g., preferences, demonstrations) and to coordinate feedback across multiple robots
are natural next steps toward practical, resource-rational HiL-RL.
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